ALCF Early Science Program

Petascale Direct Numerical Solutions of Turbulent Channel Flow

ESP Kick-Off Workshop and Project Plan
Presentation

Nicholas Malaya, Rhys Ulerich, Robert Moser

Institute for Computational Engineering and Sciences
The University of Texas at Austin

October 18, 2010

Outline

Motivation

Current Implementation

Project Overview

Turbulent Fluid Flow

- 28% of annual USA energy consumption is used for transportation
 - ► Wall-bounded fluid flows: car, plane wing, pipes, etc.
 - ► Turbulent skin friction: dominant cause of energy loss
- Efforts to reduce drag are impeded by lack of accurate models

Direct Numerical Simulations (DNS)

- Resolves all scales no modeling
- Cost increases as Re³
- Target: turbulent channel DNS
 - Re_τ ≈ 5000
 - ► (16384,1024,12288) grid

3/9

Numerical Method

• Unsteady, incompressible Navier-Stokes equations (KMM, 87)

$$\frac{\partial u_i}{\partial t} = -\frac{\partial P}{\partial x_i} + H_i + \frac{1}{Re} \nabla^2 u_i \tag{1}$$

- Fourier spectral in spanwise and streamwise directions
- Compact finite difference in the wall normal direction (Lele, 91)
- Partially implicit third-order Runge-Kutta/Crank-Nicholson scheme for time stepping (Spalart et al, 91)

Parallelism

- Fortran90 + MPI
- Structured grid "Pencil" decomposition

I/O Requirements

- ESIO: parallel HDF-5
- $8 \times 3 \times N_y N_x N_z \approx 6.6$ TB per file
- · Write frequency approximately one per wall clock hour
 - ► Writing ≈ 350
 - ► Archiving ≈ 100

Software Dependencies

Libraries:

- FFTW3/ESSL
 - ► P3DFFT
- BLAS
- LAPACK
- pHDF-5

Tools:

ParaView/VisIT

Performance and Scaling

- (12288,901,9216)(6144,633,4608)
- Strong scaling: 8k to 32k cores
- Target:
 - ► (16384,1024,12288) grid
 - ▶ 12 flow through times
 - ▶ 1.2 M time steps

Anticipated Modifications for Blue Gene/Q

- openMP node-level parallelism
- B-spline capability
- I/O tuning

Six Month Plan

- Find and hire a project postdoc
- Detailed performance measurements on Blue-Gene/P
- OpenMP
- I/O kernel tuning / integration
- ESSL/FFTW
- Start smaller runs:
 - ► (4096,256,3072), 8 flow through, 50k hours
 - ► (8192,512,6144), 4 flow through, 5M hours

..and beyond

- Overlap computation/communication
- Fault tolerance
- Asynchronous I/O

Thank you!

Questions?

nick@ices.utexas.edu

This work supported by NSF PetaApps grant(s): OCI-0749223 and NSF PRAC Grant 0832634.